Results From a Phase I Trial of Tivozanib (AV-951) Combined With Temsirolimus Therapy in Patients With Renal Cell Carcinoma

Fairooz F. Kabbinavar,¹ Sandy Srinivas,² Ralph J. Hauke,³ R. J. Amato,⁴ Brooke Esteves,⁵ Monette M. Cotreau,⁵ Andrew L. Strahs,⁵ Mayer N. Fishman⁶

¹Institute of Urologic Oncology, UCLA, Los Angeles, CA, USA; ²Stanford Medical Center, Stanford, CA, USA; ³Nebraska Cancer Specialists, Omaha, NE, USA; ⁴University of Texas Health Science Center, Houston, TX, USA; ⁵AVEO Pharmaceuticals, Inc., Cambridge, MA, USA; ⁶H. Lee Moffitt Cancer Center, Tampa, FL, USA

Introduction

- Tivozanib (AV-951) is an oral, potent and selective small-molecule tyrosine kinase inhibitor designed to provide optimal blockade of the vascular endothelial growth factor (VEGF) pathway by inhibiting all three VEGF receptors (VEGFRs)
- In cell-based models of published data, tivozanib has inhibitory activity against the VEGFR-1, -2, and -3 kinases at subnanomolar concentrations (half maximal inhibitory concentration of 0.21, 0.16, and 0.24 nM, respectively)¹
- Results from a Phase I study of tivozanib determined a maximum tolerated dose (MTD) of tivozanib 1.5 mg/day, with responses observed in patients with renal cell carcinoma (RCC) and other tumors¹
- Temsirolimus, a mammalian target of rapamycin (mTOR) inhibitor, is approved for treatment of advanced RCC
- Preclinical data support the combination of VEGFR and mTOR inhibitors for the treatment of RCC and other solid tumors²

Objectives

- To determine the safety, tolerability, and MTD of tivozanib administered in combination with temsirolimus
- To characterize the pharmacokinetic (PK) profile and antineoplastic activity of tivozanib and temsirolimus when administered in combination

Methods

Key Eligibility Criteria

- Adults aged 18 years or older
- Histologically confirmed metastatic RCC with a clear cell component
- Measureable disease by standard Response Evaluation Criteria In Solid Tumors (RECIST)
- No more than one prior VEGF-targeted therapy
- No prior treatment with temsirolimus or other mTOR-targeted therapy
- Karnofsky performance status greater than 70%, with a life expectancy of at least 3 months
- No central nervous system primary malignancy or active metastasis

Study Design

• Tivozanib was administered orally once daily for 3 weeks, followed by a 1-week break (4 weeks = 1 cycle; **Figure 1**)

T, temsirolimus; C, cycle; D, day.

- Temsirolimus was administered intravenously once a week starting on Day 8 of Cycle 1
- Sequential cohorts of patients were enrolled using standard 3 + 3 doseescalation guidelines (Table 1); enrollment to the next dose level occurred only after acceptable tolerability was determined

Dose level	Tivozanib dose	Temsirolimus dose	No. of patients enrolled
1	0.5 mg/day	15 mg/week	5
2	1.0 mg/day	15 mg/week	4
3	1.5 mg/day	15 mg/week	3
4	1.5 mg/day	25 mg/week	3
MTD expansion	1.5 mg/day	25 mg/week	12

- An expansion cohort of 12 additional patients was enrolled at the MTD for further safety and efficacy analyses
- The MTD of tivozanib plus temsirolimus was defined as the maximum dose at which no more than one patient experienced a dose-limiting toxicity, defined as:
- Grade 3 non-hematologic toxicity lasting more than 3 days (except alopecia, rash, and self-limiting/medically controllable events); grade 4 non-hematologic toxicity
- Grade 3/4 neutropenia (associated with fever and requiring antibiotics); grade 4 neutropenia lasting longer than 5 days; grade 4 thrombocytopenia
- Any toxicity requiring treatment interruption for longer than 2 weeks

Key Study Endpoints

- Responses were evaluated with RECIST 1.0
- Blood samples were collected for evaluation of PK parameters for tivozanib and temsirolimus serum concentrations

Statistical Analysis

- PK parameters were determined by non-compartmental methods using Phoenix WinNonlin, version 6.2 (Pharsight Corporation, Cary, NC)
- Adverse events (AEs) were graded using the National Cancer Institute Common Terminology Criteria for AEs, version 3.0

Results

Patients

- A total of 27 patients with RCC received at least one dose of study medication and were evaluable for safety (Table 2)
- Median duration of treatment was 21.9 weeks (range, 6.9–97.9 weeks)

Table 2. Patient Characteristics Characteristic N = 27Median age (range), y 61 (43-71) Male sex, n (%) 25 (93) Race, n (%) White 24 (89) Asian 2 (7) Black/African American 1 (4) Median time since diagnosis (range), mo 24 (0-146) Karnofsky performance status, a n (%) 100% 18 (67) 90% 5 (19) 80% 4 (15) No. of prior VEGF treatments, n (%) 6 (22) 20 (74) 1 (4) Prior VEGF treatments, n (%) 3 (11) Bevacizumab Sorafenib 10 (37) 9 (33) Sunitinib

^aPercentages may not total 100% due to rounding.

Efficacy

- A total of 22 patients received at least two cycles of tivozanib treatment and were included in the efficacy analyses
- Of the remaining five patients, two received less than two cycles of tivozanib before withdrawing for reasons other than progressive disease, and three patients did not satisfy the entry criteria
- Median duration of treatment, measured from Day 1 of Cycle 1 to the date of last treatment, was 21.9 weeks (range, 6.9–97.9 weeks)
- The objective response rate was 23% (95% confidence interval, 8%–45%; **Table 3**)
- An additional 15 patients maintained stable disease, and 86% of patients demonstrated tumor shrinkage (Figure 2)

Table 3. Best Overall Response	
Response,a n (%)	n = 22
Objective responseb Complete response Partial response	5 (23) 0 5 (23) ^c
Stable disease	15 (68)
Progressive disease	2 (9)

^aBy RECIST 1.0.

^bObjective response = complete + partial response. ^cUnconfirmed response in one patient.

Maximum change in tumor size from baseline was not available for five patients.

Pharmacokinetics

Temsirolimus had no effect on tivozanib serum concentration (Figures 3 and 4)

SD, standard deviation.

- The mean (± standard deviation) maximum plasma concentration (C_{max}) and area under the curve extrapolated to the last time point (AUC_{0-last}) for temsirolimus are lower and higher, respectively, than previously reported,^{3,4} most likely due to the sparse sampling schedule employed in this study
- C_{max}: 164.3 ng/mL (± 88.1; temsirolimus 15 mg/week; n=7) and 199.6 ng/mL (± 33.4 ng/mL; temsirolimus 25 mg/week; n=9)
- AUC_{0-last}: 3191 hong/mL (± 1925 hong/mL; temsirolimus 15 mg/week);
 4245 hong/mL (± 2033 hong/mL; temsirolimus 25 mg/week)
- Sirolimus, the principal active metabolite of temsirolimus in plasma, had a similar pattern (results have been previously presented)⁵

Adverse Events

- The MTD for the combination was tivozanib 1.5 mg/day + temsirolimus 25 mg/week
- One patient receiving the MTD required a dose reduction of tivozanib (grade 2 fatigue), and another required reduction of temsirolimus (grade 3 hyponatremia)
- Eight patients (30%) withdrew from the study due to AEs, including three who withdrew due to drug-related AEs: left ventricular dysfunction (possibly related to tivozanib), fatigue (possibly related to temsirolimus), colitis, and rectal abscess (possibly related to tivozanib and/or temsirolimus)
- One patient died during the study due to cardiopulmonary arrest unrelated to drug administration
- The most common treatment-emergent AEs (any causality) were fatigue (74%), stomatitis (59%), diarrhea (56%), decreased appetite (52%), and nausea (48%; **Table 4**)
- Fatigue was the most common grade 3 or greater AE, reported by four patients
- Hyperglycemia and hypophosphatemia were the most common grade 3/4 laboratory abnormalities, reported by four patients each
- No dose-limiting toxicities were observed

Table 4. Treatment-emergent Adverse Events in >20% of Patients at the MTD^{α}

	Tivozanib 1.5 mg/day + temsirolimus 25 mg/week (n=15) ^b	Total (N=27)
Adverse event	Adverse event, all grades/grade 3 and 4	Adverse event, all grades/grade 3 and 4, n (%)
Fatigue	13/3	20 (74)/4 (15)
Stomatitis	9/1	16 (59)/2 (7)
Diarrhea	9/2	15 (56)/2 (7)
Decreased appetite	7/0	14 (52)/0
Nausea	8/1	13 (48)/1 (4)
Constipation	7/1	11 (41)/1 (4)
Dyspnea	7/1	10 (37)/1 (4)
Decreased weight	5/0	8 (30)/0
Dehydration	5/2	7 (26)/2 (7)
Vomiting	3/1	7 (26)/1 (4)
Cough	4/0	7 (26)/0
Hypertension	5/0	7 (26)/0
Abdominal pain	5/2	6 (22)/2 (7)
Back pain	4/0	6 (22)/1 (4)
Rash erythematous	3/0	6 (22)/1 (4)
Anemia	3/0	6 (22)/0
Dysphonia	4/0	6 (22)/0
Epistaxis	5/0	6 (22)/0
Pyrexia	4/0	6 (22)/0
Rash	5/0	6 (22)/0

^aFurther details on the dose cohorts were previously reported.⁵ blncludes the maximum tolerated dose expansion cohort.

Conclusions

- Tivozanib and temsirolimus can safely be combined at the full recommended doses of each agent, 1.5 mg/day and 25 mg/week, respectively, and the combination of tivozanib and temsirolimus was well tolerated in this study
 - The incidence of AEs associated with tivozanib and temsirolimus in combination were similar to the safety profiles of these agents administered as monotherapy in patients with advanced RCC,^{6,7} suggesting no evidence of additive toxicity
- In patients with advanced RCC, the combination of tivozanib and temsirolimus demonstrated encouraging evidence of clinical activity, with 23% of patients achieving a partial response, 68% maintaining stable disease, 86% demonstrating tumor reduction, and a median duration of treatment of 21.9 weeks, with 2 patients remaining on treatment for 80 and 95 weeks
- Tivozanib is the first selective VEGFR tyrosine kinase inhibitor to be successfully combined with an mTOR inhibitor at the full recommended dose and schedule of both agents
- Data suggest no PK interaction between tivozanib and temsirolimus
- The clinical activity and manageable AE profile observed with this combination of tivozanib and temsirolimus warrants further exploration in patients with RCC

References

- Eskens FALM et al. In: Proceedings of the 99th Annual Meeting of the AACR. Philadelphia, PA: American Association of Cancer Research; 2008. Abstract B-201
- Lin J et al. Poster presented at: EORTC-NCI-AACR International Symposium on Molecular Targets and Cancer Therapeutics; November 16–19, 2010; Berlin, Germany. Abstract PP20.
 Atkins MB et al. J Clin Oncol 2004;22:909–918.
- Motzer RJ et al. J Clin Oncol 2007;25:3958–3964.
 Kabbinavar FF et al. Poster presented at: Annual Meeting of the American Society of Clinical Oncology; June 3–4, 2011; Chicago IL. Poster 4549.
- Hudes G et al. N Engl J Med 2007;356:2271–2281.
 Nosov DA et al. Poster presented at: Annual Meeting of the American Society of Clinical Oncology; June 3–7, 2011; Chicago, IL. Abstract 4450.

Acknowledgments

Study (NCT00563147) supported by AVEO Pharmaceuticals, Inc., Cambridge, MA. Editorial assistance was provided by Monique Antoine, MD, Chameleon Communications International, and was funded by AVEO Pharmaceuticals, Inc.