Background

- Tivozanib is a selective oral vascular endothelial growth factor tyrosine kinase inhibitor (VEGF TKI),¹ with a long half-life and activity against all 3 VEGF receptors (VEGFRs)²
- In clinical studies, tivozanib has shown activity when combined with temsirolimus in patients with renal cell carcinoma,³ paclitaxel in patients with metastatic breast cancer,⁴ and everolimus in patients with metastatic colon cancer⁵
- BATON-CRC (Biomarker Assessment of Tivozanib in Oncology-colorectal cancer) was a randomized, open-label, Phase 2 trial of tivozanib + mFOLFOX6 vs bevacizumab + mFOLFOX6 in patients with previously untreated metastatic CRC (mCRC) initiated to expand on results observed in a Phase 1b study
- In the Phase 2 interim analysis of efficacy, progression-free survival (PFS) and overall response rate (ORR) were comparable between the two arms and there were no significant associations between serum/tumor biomarkers and outcomes⁶
- The identification of biomarkers in targeted VEGFR cancer therapy has been challenging; biomarker analysis was included in the Phase 2 study and neuropilin-1 (NRP-1) is a possible target candidate^{7,8}
- NRP-1, expressed on both endothelial and tumor cells, regulates cell migration (branching angiogenesis) and tumor growth
- Membrane-bound NRP-1 is a receptor for both semaphorins (Sem3A, B, C, E, F) and VEGFs (VEGF-A_(165,121), VEGF-B₍₁₆₇₎, VEGF-C, VEGF-D, PIGF-2)
- NRP-1 is a VEGFR-2 co-receptor and is involved in regulation of VEGFR-2-mediated angiogenesis
- Soluble NRP-1 binds to VEGF-A165 and appears to prevent VEGFR-2 binding
- Blocking NRP-1 function is additive to anti-VEGF therapy in preclinical models

Objective

• The objective of this study was to provide final results of BATON-CRC Phase 2 trial of tivozanib + mFOLFOX6 (Arm A) vs bevacizumab + mFOLFOX6 (Arm B), including results from predefined biomarker analyses

Methods

Eligible patients

- No prior systemic chemotherapy, no fluorouracil-containing adjuvant therapy in the previous 6 months, and an Eastern Cooperative Oncology Group performance status (ECOG PS) ≤ 1
- No prior VEGF therapy (including bevacizumab) was permitted, nor a history of significant thromboembolic or vascular disorders within 6 months of study entry

• Study design

- Patients were randomized 2:1 and stratified by lactate dehydrogenase (LDH), origin of cancer, and number of metastatic sites (Figure 1)
- Patients received either tivozanib 1.5 mg once daily for 21 days followed by 7 days off treatment or bevacizumab 5 mg/kg every 2 weeks on days 1 and 15
- All patients received mFOLFOX6 every 2 weeks of each 28-day cycle
- <u>Oxaliplatin</u>: Days 1 and 15: 85 mg/m² IV bolus in 500 mL of D5W over 2 hours • Leucovorin calcium: Days 1 and 15: 400 mg/m² IV bolus in 500 mL of D5W over
- 2 hours (may be given concurrently with oxaliplatin through a separate IV line) • <u>Fluorouracil bolus</u>: Days 1 and 15: 400 mg/m² IV bolus over 5–15 minutes or infused per institutional guidelines
- Fluorouracil infusion: Days 1–3 and 15–17: 2400 mg/m² continuous IV infusion via infusion pump
- End points

54821 AVEO AACR Poster_v2b FINAL.indd 1

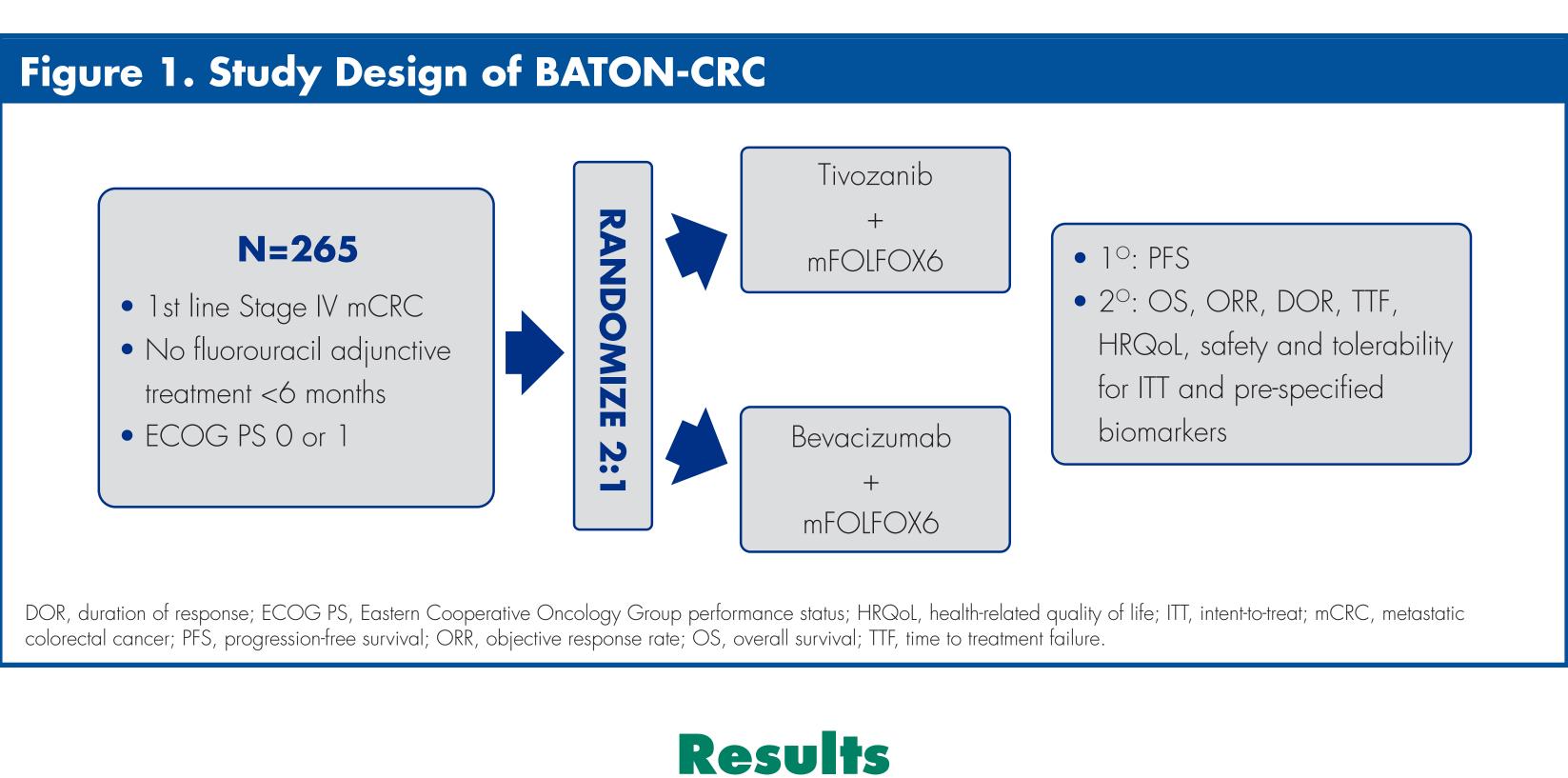
- Primary end point was PFS by investigator radiologic assessment
- Secondary end points included PFS by independent radiological review, overall survival (OS), ORR, duration of response (DOR), time to treatment failure (TTF), and biomarker subgroup analysis of LDH; VEGF A, C, D; CD68; myeloid-derived gene signature; NRP-1; and serum soluble cytokines
- Biomarker analysis
- Serum biomarker analysis was performed using Myriad Rules Based Medicine (RBM) assay, which measures multiple serum proteins in multiplex fashion
- Assay is based on the capture-sandwich format using antibodies attached to fluorescently encoded microspheres to capture the antigen from a biological sample such as serum
- A Cox proportional hazard model was used to assess the association between potential serum biomarkers and PFS, OS

N=265 • 1 st line Stage IV mCRC No fluorouracil adjunctive treatment <6 months • ECOG PS 0 or 1

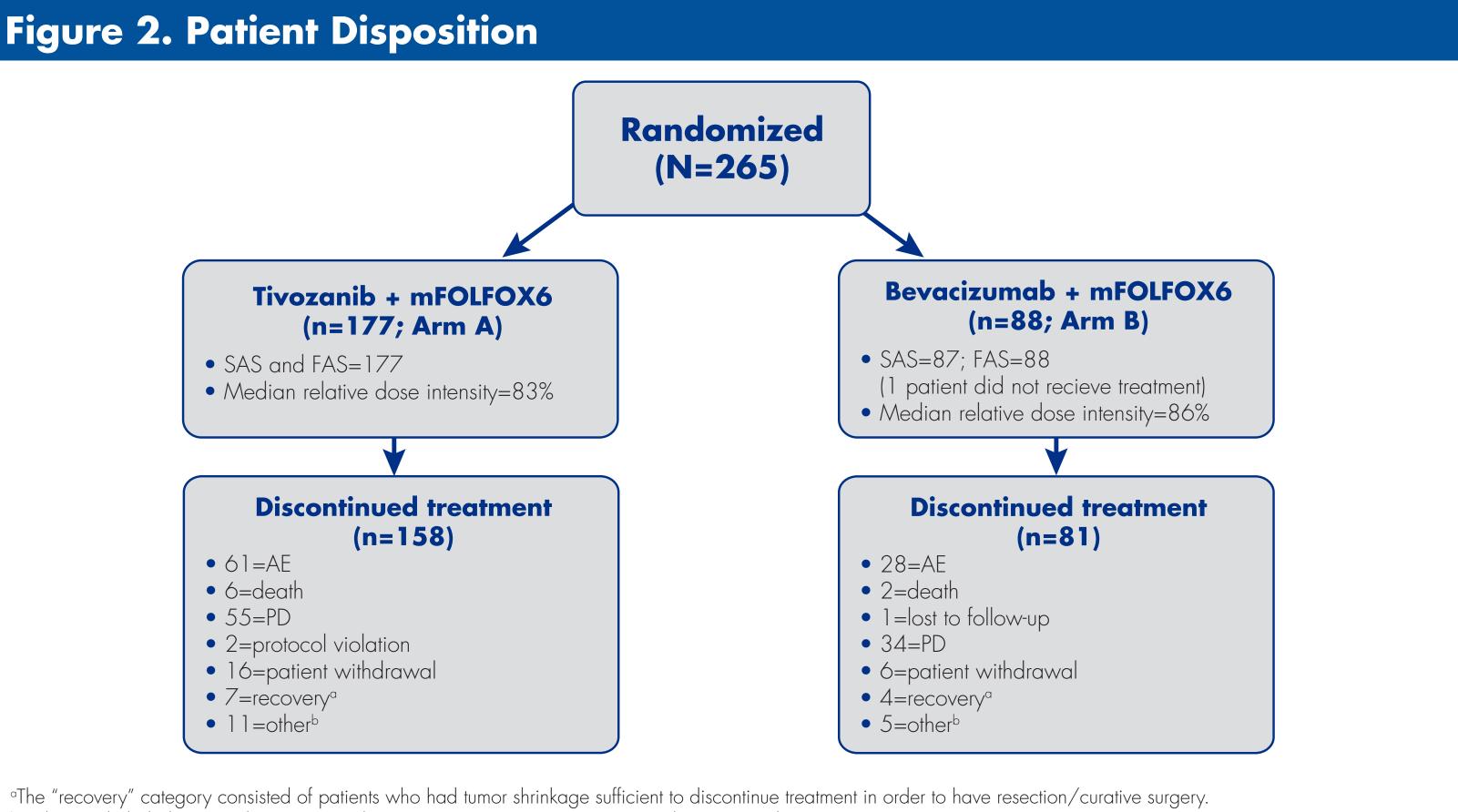
Patients

Figure 2. Patient Disposition

Tive
SAS and Median
Dis
61=AE 6=deat 55=PD 2=proto


Table 1. Baseline Patient Characteristics

	Tivozanib + mFOLFOX6 (n=177)	Bevacizumab + mFOLFOX6 (n=88)	Total (n=265)
Sex, n (%)			
Male	118 (66.7)	55 (62.5)	173 (65.3)
Age			
Mean (SD)	61.9 (9.6)	62.6 (11.2)	62.2 (10.1)
Race, n (%)			
White	169 (95.5)	85 (96.6)	254 (95.8)
Black	2 (1.1)	0	2 (0.8)
Asian	3 (1.7)	2 (2.3)	5 (1.9)
ECOG PS, n (%)			
0	95 (53.7)	58 (65.9)	153 (57.7)
1	82 (46.3)	30 (34.1)	112 (42.3)
LDH status, n (%)			
<1.5 x ULN	127 (71.8)	64 (72.7)	191 (72.1)
≥1.5 x ULN	50 (28.2)	24 (27.3)	74 (27.9)
Origin of cancer, n (%)			
Rectal	53 (29.9)	24 (27.3)	77 (29.1)
Colon	124 (70.1)	64 (72.7)	188 (70.9)
No. of metastatic sites/	organs, n (%)		
1	56 (31.6)	30 (34.1)	86 (32.5)
2	80 (45.2)	34 (38.6)	114 (43.0)
3	29 (16.4)	21 (23.9)	50 (18.9)
≥4	12 (6.8)	3 (3.4)	15 (5.7)
ECOG PS, Eastern Cooperative Oncology G	Group performance status; LDH, lactate dehydro	ogenase; SD, standard variation; ULN, upper lim	nit of normal.


Neuropilin-1 as a potential biomarker of progression-free survival benefit for tivozanib + mFOLFOX6 versus bevacizumab + mFOLFOX6 in metastatic colorectal cancer: post-hoc biomarker analysis of BATON-CRC Phase 2 trial

Al B. Benson III,¹ Andrew Krivoshik,² Chip Van Sant,² Jeno Gyuris,³ Bin Feng³

¹Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA; ²Astellas Pharma Global Development, Northbrook, IL, USA; ³AVEO Oncology, Cambridge, MA, USA

• Between 12/20/11 and 4/28/13, 265 subjects were randomized (Figure 2, Table 1)

^b"Other" included physician decision, complete treatment response, patient wanted to pursue other treatment options, et AE, adverse event; FAS, full analysis set; PD, progressive disease; SAS, safety analysis set.

Safety

- The overall safety profile was comparable between treatment arms
- For both, the most common all-grade treatment-emergent adverse event (TEAE) was diarrhea (58.2% Arm A and 57.5% Arm B) and the most common grade 3/4 TEAE was neutropenia (39.5% Arm A and 24.1% Arm B) (Table 2)

Table 2. All-Grade Treatment-Emergent AEs ≥20% of Patients in Either Freatment and Grade 3/4 Treatment Emergent AEs

		mFOLFOX6 177)		(n=88)	
AE, n (%)	All-Grade	Grade 3/4	All-Grade	Grade 3/4	
Diarrhea	103 (58.2)	19 (10.7)	50 (57.5)	9 (10.3)	
Nausea	99 (55.9)	5 (2.8)	47 (54.0)	2 (2.3)	
Fatigue	97 (54.8)	20 (11.3)	46 (52.9)	8 (9.2)	
Neutropenia	95 (53.7)	70 (39.5)	37 (42.5)	21 (24.1)	
Hypertension	79 (44.6)	29 (16.4)	25 (28.7)	9 (10.3)	
Peripheral neuropathy	75 (42.4)	18 (10.2)	34 (39.1)	11 (12.6)	
Decreased appetite	64 (36.2)	2 (1.1)	25 (28.7)	2 (2.3)	
Vomiting	60 (33.9)	10 (5.6)	24 (27.6)	1 (1.1)	
Thrombocytopenia	54 (30.5)	10 (5.6)	13 (14.9)	2 (2.3)	
Constipation	50 (28.2)	1 (0.6)	32 (36.8)	1 (1.1)	
Paresthesia	46 (26.0)	2 (1.1)	20 (23.0)	3 (3.4)	
Abdominal pain	45 (25.4)	7 (4.0)	17 (19.5)	5 (5.7)	
Dysphonia	42 (23.7)	1 (0.6)	13 (14.9)	0	
Mucosal inflammation	40 (22.6)	5 (2.8)	29 (33.3)	6 (6.9)	
Asthenia	39 (22.0)	5 (2.8)	17 (19.5)	1 (1.1)	
Stomatitis	37 (20.9)	5 (2.8)	14 (16.1)	2 (2.3)	
Epistaxis	34 (19.2)	0	25 (28.7)	0	
Dyseguesia	26 (14.7)	0	18 (20.7)	0	

- 25.3% Arm B)
- Discontinuation of treatment due to an AE occurred in 41.2% of patients in Arm A and 34.5% of patients in Arm B
- and deep vein thrombosis for Arm B
- The 2 most common SAEs in Arm A were diarrhea (4.0%) and pulmonary embolism (4.0%), and in Arm B were pyrexia (8.0%) and diarrhea (5.7%) Serious treatment-related AEs were reported in 21.5% of patients for tivozanib (most common being pulmonary embolism) and in 17.2% of patients for bevacizumab (most commonly abdominal pain at 3.4%)
- A total of 9 patients died while on treatment or within 30 days of last dose - 7 (4.0%) patients in Arm A, 3 of whom had at least 1 fatal AE considered to be either duodenal neoplasm) or possibly related (asthenia)
- 2 (2.3%) patients in Arm B, both of which were due to AEs considered to be probably related to bevacizumab (hepatic hemorrhage and large intestine perforation)

Overall Efficacy

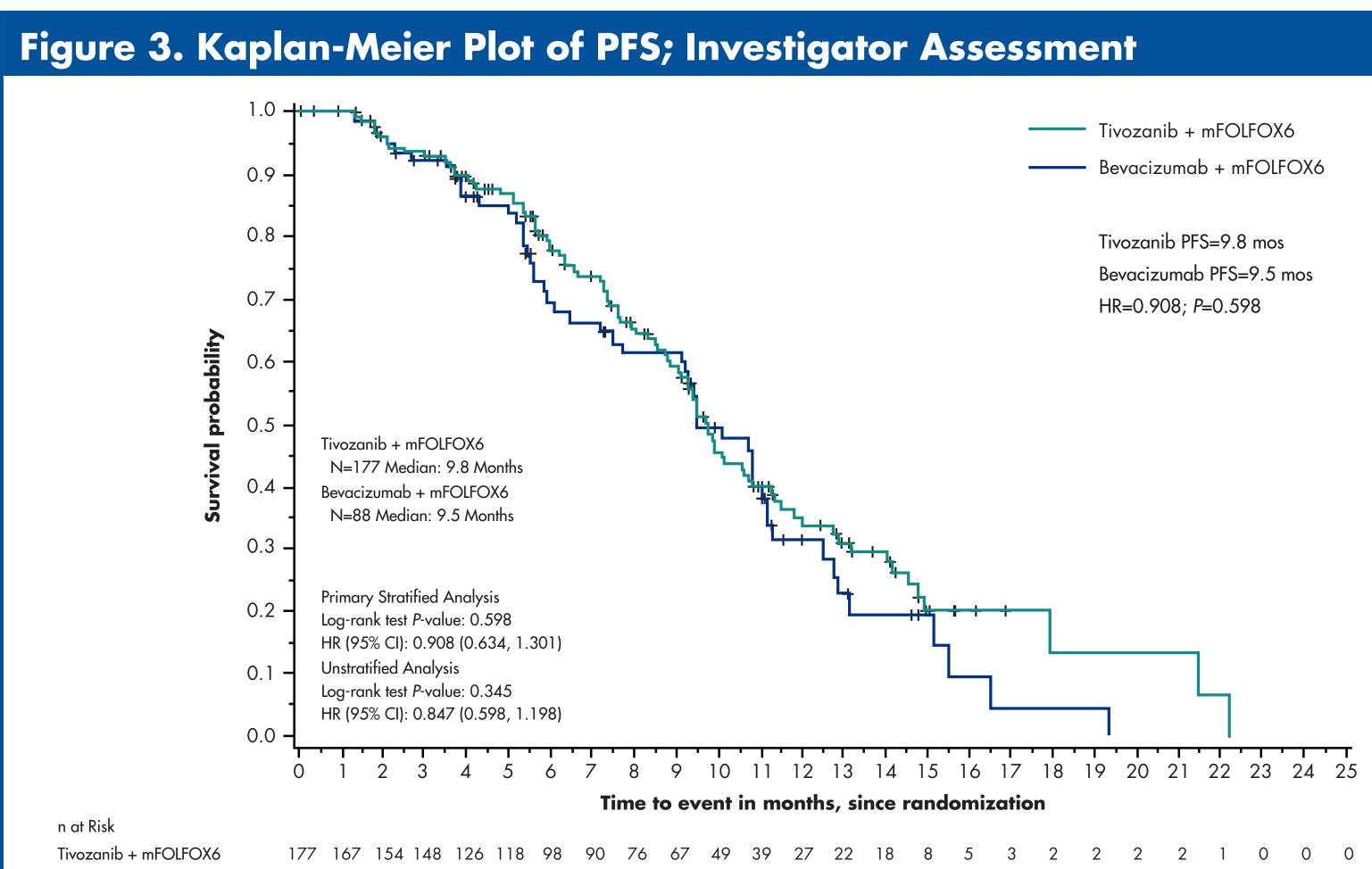
- In the BATON-CRC final PFS analysis, tivozanib performed similar to bevacizumab in the intent-to-treat (ITT) population (**Figure 3**)

NRP-1-Related Efficacy

- Of the biomarkers analyzed, NRP-1 is the only biomarker that predicts a treatment effect (**Figure 4**)
- (Figures 5A and 5B)

POSTER PRESENTED AT THE AACR ANGIOGENESIS MEETING; MARCH 6, 2015; ORLANDO, FL

For both, the most common treatment-related AEs were hypertension (39.5% Arm A and


• Pulmonary embolism was the most common AE leading to discontinuation for Arm A

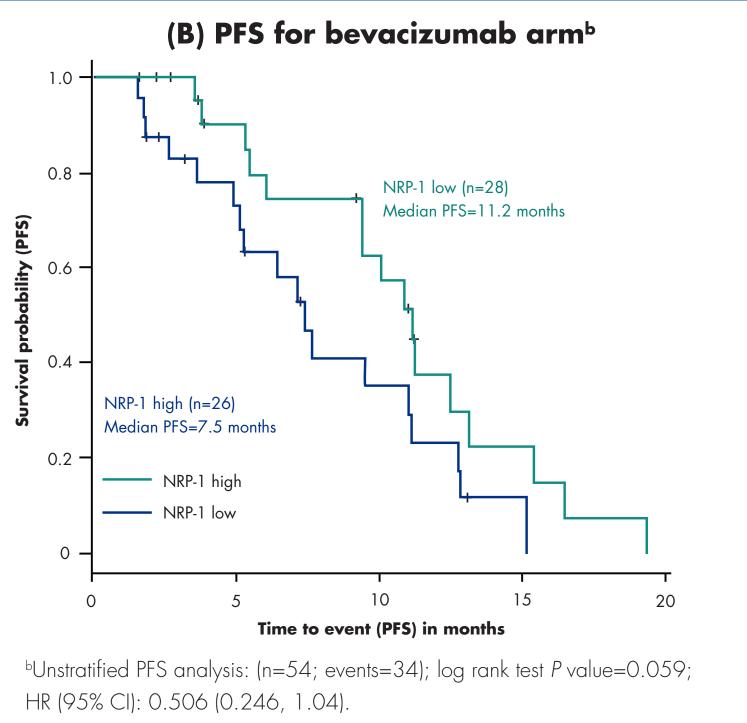
Serious AEs (SAEs) were reported for 46.3% of patients in Arm A compared with 48.3% in Arm B

probably related to tivozanib (pulmonary hemorrhage, gastrointestinal hemorrhage, and

- ORR was 49.6% (39.4%, 54.5%) tivozanib vs 43.2% (32.7%, 54.2%) bevacizumab

- NRP-1 low and high were defined as above and below the median of 298.5 pg/mL • In both arms, patients with NRP-1 low showed an improved PFS vs patients with NRP-1 high


88 82 75 68 59 55 44 42 37 37 27 21 12 8 6 4 2 1 1 1 0 0 0 0 0 0 Bevacizumab + mFOLFOX6 CI, confidence interval; HR, hazard ratio.


Figure 4. Forest Plot for Biomarker^a Subgroup Analysis of PFS

Subgroups	Tivozanib Event/N	Bevacizumab Event/N	HR [95% CI]
Serum VEGF–A < Median	27/54	16/27	0.88 [0.47, 1.65]
Serum VEGF–A ≥ Median	29/54	18/27	0.62 [0.34, 1.12]
Serum VEGF–C < Median	23/52	16/26	0.57 [0.3, 1.1]
Serum VEGF−C ≥ Median	33/56	18/28	0.99 [0.55, 1.81]
Serum VEGF–C/A < Median	31/56	15/25	0.56 [0.3, 1.05]
Serum VEGF−C/A ≥ Median	25/52	19/29	0.96 [0.52, 1.79]
Serum sVEGFR–2 < Median	23/53	14/28	0.71 [0.36, 1.4]
Serum sVEGFR−2 ≥ Median	33/55	20/26	0.81 [0.46, 1.43]
Serum sVEGFR–3 < Median	20/51	16/30	0.58 [0.3, 1.14]
Serum sVEGFR−3 ≥ Median	36/57	18/24	0.78 [0.44, 1.38]
Serum IL–8 < Median	22/53	14/26	0.52 [0.26, 1.04]
Serum IL−8 ≥ Median	34/55	20/28	0.97 [0.55, 1.71]
Serum Neuropilin < Median	15/52	16/28	0.38 [0.18, 0.79]
Serum Neuropilin ≥ Median	41/56	18/26	1 [0.58, 1.75]
Tumor VEGF–A < Median	18/38	13/18	0.67 [0.33, 1.37]
Tumor VEGF–A ≥ Median	24/37	7/16	1.21 [0.51, 2.87]
Tumor VEGF–C < Median	20/39	11/16	0.63 [0.3, 1.34]
Tumor VEGF–C ≥ Median	22/36	9/18	1.33 [0.61, 2.9]
Tumor VEGF–C/A < Median	22/37	9/15	0.99 [0.45, 2.18]
Tumor VEGF–C/A ≥ Median	20/38	11/19	0.83 [0.39, 1.73]
Tumor VEGF–D < Median	23/41	8/13	0.82 [0.36, 1.85]
Tumor VEGF–D ≥ Median	19/34	12/21	1.01 [0.49, 2.09]
Tumor PIGF < Median	20/38	9/16	0.85 [0.38, 1.89]
Tumor PIGF \geq Median	22/37	11/18	0.98 [0.47, 2.04]

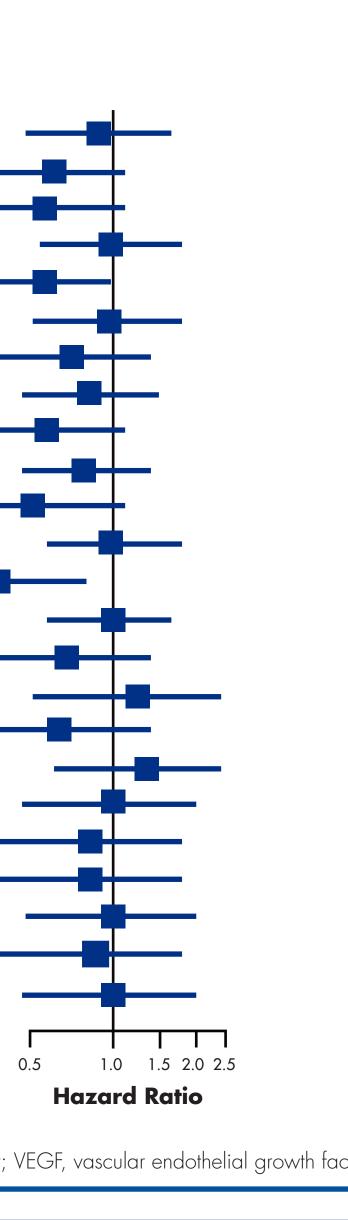
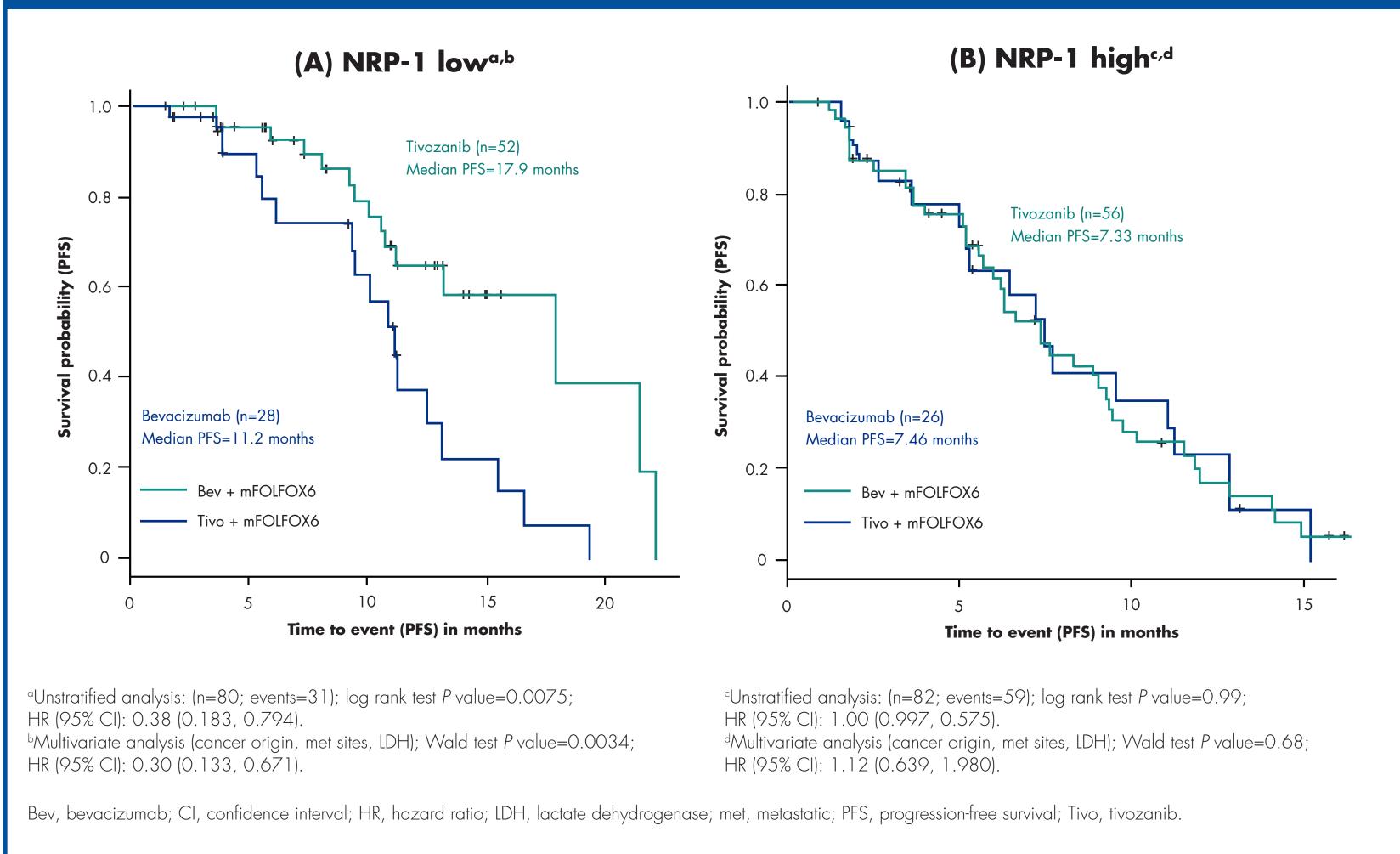

^aSerum values indicate protein levels in circulation; for tumor biomarkers, the categories indicate RNA expression. IL-8, interleukin-8; PFS, progression-free survival; PIGF, placental growth factor; sVEGFR, serum vascular endothelial growth factor receptor; VEGF, vascular endothelial growth factor.

Figure 5. PFS of Tivozanib- (A) and Bevacizumab-Treated (B) Patients With High vs Low NRP-1 Levels Based on a Median Cutoff



Bevacizumab + mFOLFOX6 Tivozanib PFS=9.8 mos Bevacizumab PFS=9.5 mos HR=0.908; *P*=0.598

• Patients with low NRP-1 treated with tivozanib + FOLFOX6 had an increased PFS compared with patients treated with bevacizumab, whereas PFS was comparable for both treatments in patients with high NRP-1 (Figures 6A and 6B)

Figure 6. PFS of Patients With NRP-1 Low (A) and NRP-1 High (B) Levels **Based on a Median Cutoff**

Conclusions

- Tivozanib and bevacizumab have comparable PFS and ORR when used in combination with mFOLFOX6 in unselected patients with untreated mCRC
- Patients with low NRP-1 showed an improved PFS vs patients with high NRP-1 in both treatment arms, supporting the value of NRP-1 as a potential prognostic marker for angiogenesis inhibitors
- Data suggest that in patients with advanced CRC and low NRP-1, treatment with tivozanib in combination with mFOLFOX6 may be superior to treatment with bevacizumab with mFOLFOX6
- Differential activity observed with tivozanib vs bevacizumab in NRP-1 low patients is potentially due to the broader VEGF pathway inhibitory activity of tivozanib
- A potential hypothesis for the NRP-1 effect may be that:
- In the presence of high serum NRP-1, VEGF-A164 is bound and VEGFR-2 is not activated, making the method of VEGFR blockade less important
- In the presence of low serum NRP-1, VEGFR activation is high and modality of blockade can affect the response (tivozanib blocks all 3 VEGFRs)
- The effect of therapy on patients with low serum NRP-1 levels was not seen at the interim analysis due to a paucity of progressions
- A prospective randomized trial comparing tivozanib with bevacizumab in patients with low NRP-1 is warranted

References

- 1. Nakamura K, et al. *Cancer Res.* 2006;66:9134–9142.
- 2. Eskens FA, et al. *Clin Cancer Res*. 2011;17:7156–7163.
- 3. Fishman MN, et al. *Eur J Cancer*. 2013;49:2841–2850.
- 4. Mayer EL, et al. Breast Cancer Res Treat. 2013;140:331–339
- 5. Wolpin BM, et al. Oncologist. 2013;18:377–378.
- 6. Benson A, et al. Ann Oncol. 2014;25:Abstract 533P.
- 7. Cagnoni G and Tamagnone L. Oncogene. 2014;33:4795–4802.
- 8. Pan Q, et al. *Cancer Cell*. 2007;11:53–67.

Acknowledgments

This study was sponsored by AVEO Oncology. Editorial assistance was provided by Scientific Connexions, an Ashfield Company, and was funded by AVEO Oncology.