The Effect of Food on the Pharmacokinetics of Tivozanib

Monette M. Cotreau, PhD¹; Thomas A. King, MD²; Lisa Massmanian¹; Andrew L. Strahs, PhD¹; William Slichenmyer, MD¹; Dennis L. Vargo, MD¹

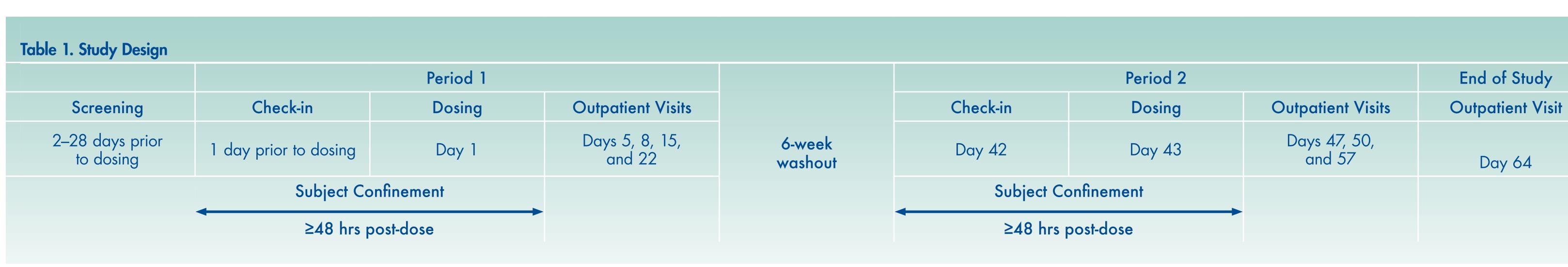
¹AVEO Pharmaceuticals, Inc., Cambridge, MA ²Covance Clinical Research Unit, Dallas, TX

Introduction

- Tivozanib (AV-951) is a potent, selective, long half-life (t_{1/2}), small-molecule tyrosine kinase inhibitor of the vascular endothelial growth factor receptors 1, 2, and 3¹
- Results from a Phase I study in patients with cancer determined the maximum tolerated dose of tivozanib to be 1.5 mg/day¹
- Tivozanib has demonstrated anti-tumor activity in a Phase II study and a recent Phase III study in patients with renal cell carcinoma (RCC),^{2,3} and is currently being studied in Phase I/II studies of patients with other solid tumors
- The pharmacokinetics (PK) of tivozanib have been evaluated across various studies of healthy volunteers⁴ and patients with cancer^{1,2,4–6}
- Median time to peak serum concentration (T_{max}) ranges from ~ 2 to 24 hours with substantial variability among subjects, 1,2,6 most likely due to enterohepatic recirculation
- Accumulation at steady state is ~6 to 7 times single-dose levels.¹ This accumulation is consistent with the long mean $t_{1/2}$ of tivozanib (~3.6–4.7 days)^{1,2,4}
- The PK profile of tivozanib is similar in healthy volunteers and patients with cancer⁴
- This Phase I study was conducted to prospectively evaluate the effect of food on the PK of a single 1.5 mg dose of tivozanib in healthy subjects

Objectives

- To determine the effect of food on the PK of a single dose of 1.5 mg tivozanib in healthy
- To assess the tolerability of a single dose of 1.5 mg tivozanib in healthy subjects


Methods

Key Eligibility Criteria

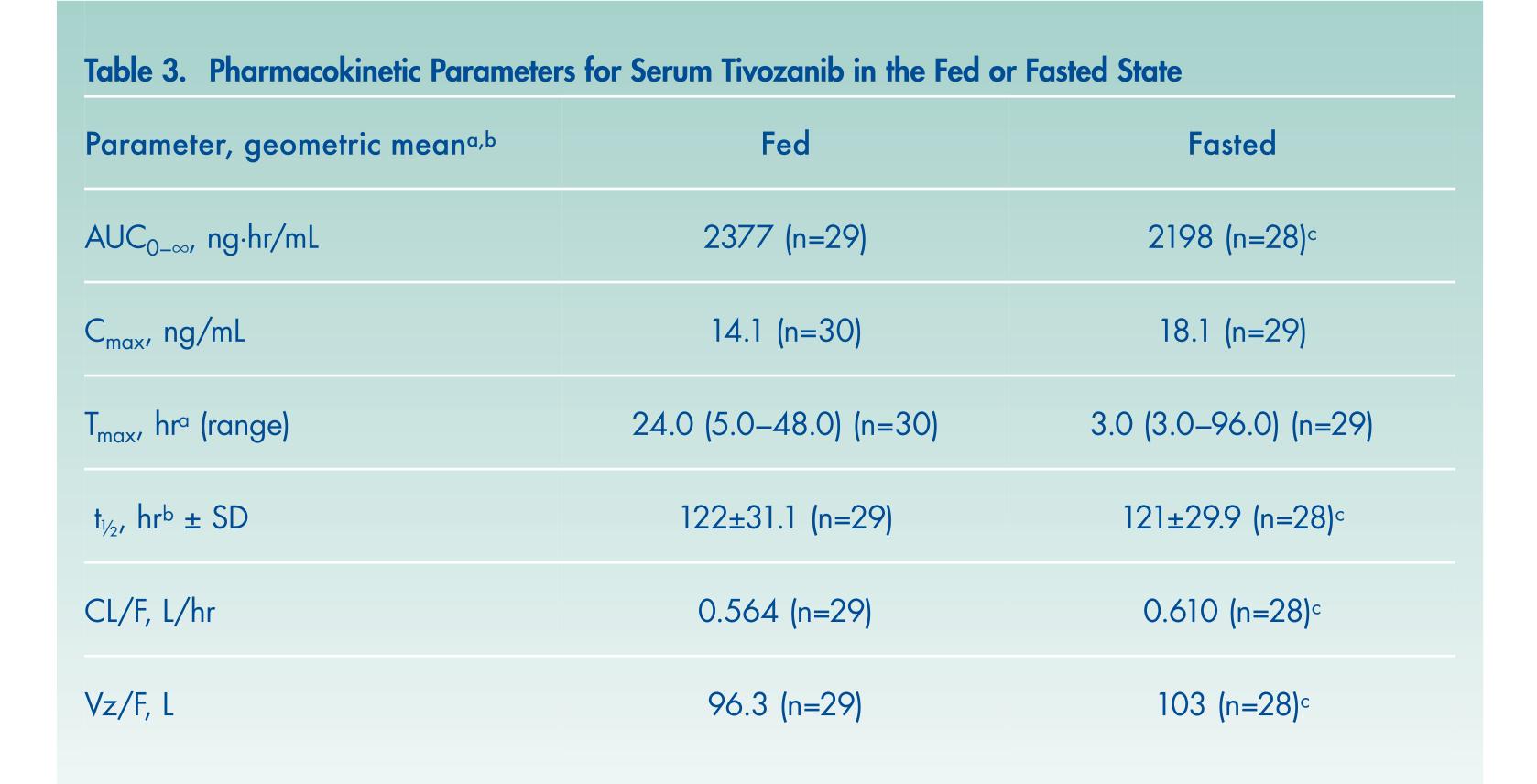
- Healthy males or females aged 18–55 years
- Body mass index (BMI) 18.5–31.0 kg/m²
- No clinically significant findings from medical history, physical examination, vital signs,
- electrocardiogram (ECG), or laboratory assessments
- Subjects with blood pressure greater than 140/90 mmHg were excluded
- Subjects were prohibited from use of prescription medications and over-the-counter preparations

Study Design and Treatment

- This was a single-center, open-label, randomized, two-period, crossover Phase I study conducted at Covance Clinical Research Unit in Dallas, Texas, USA (Table 1)
- Subjects were screened for eligibility up to 28 days prior to study entry and were randomly assigned to 1 of the following sequences on Day 1 of Period 1:
- Sequence 1: treatment with a single oral dose of 1.5 mg tivozanib in the fasted state (approximate 10-hour fast) followed by a 6-week washout period, then treatment with a single oral dose of 1.5 mg tivozanib in the fed state (after a standard US Food and Drug Administration high-fat breakfast)
- Sequence 2: treatment with a single oral dose of 1.5 mg tivozanib in the fed state followed by a 6-week washout period, then treatment with a single oral dose of 1.5 mg tivozanib in
- For each study period of the sequence, subjects were admitted to the clinical research unit (CRU) 1 day before dosing and fasted ~10 hours
- safety monitoring, and returned to the CRU on an outpatient basis for collection of additional blood samples for up to 504 hours post-dose
- PK blood samples were collected at the following time points for each study period of the sequence: 0 hour (predose), 1, 3, 5, 7, 10, 12, 18, 24, 36, 48, 96, 168, 336, and 504 hours
- Physical examinations, ECGs, vital signs, How Do You Feel? (HDYF?) inquiries, and clinical laboratory evaluations were performed at screening and/or at specified times during the study
- All adverse events (AE) were recorded throughout the study until study completion

Pharmacokinetics and Statistical Analysis

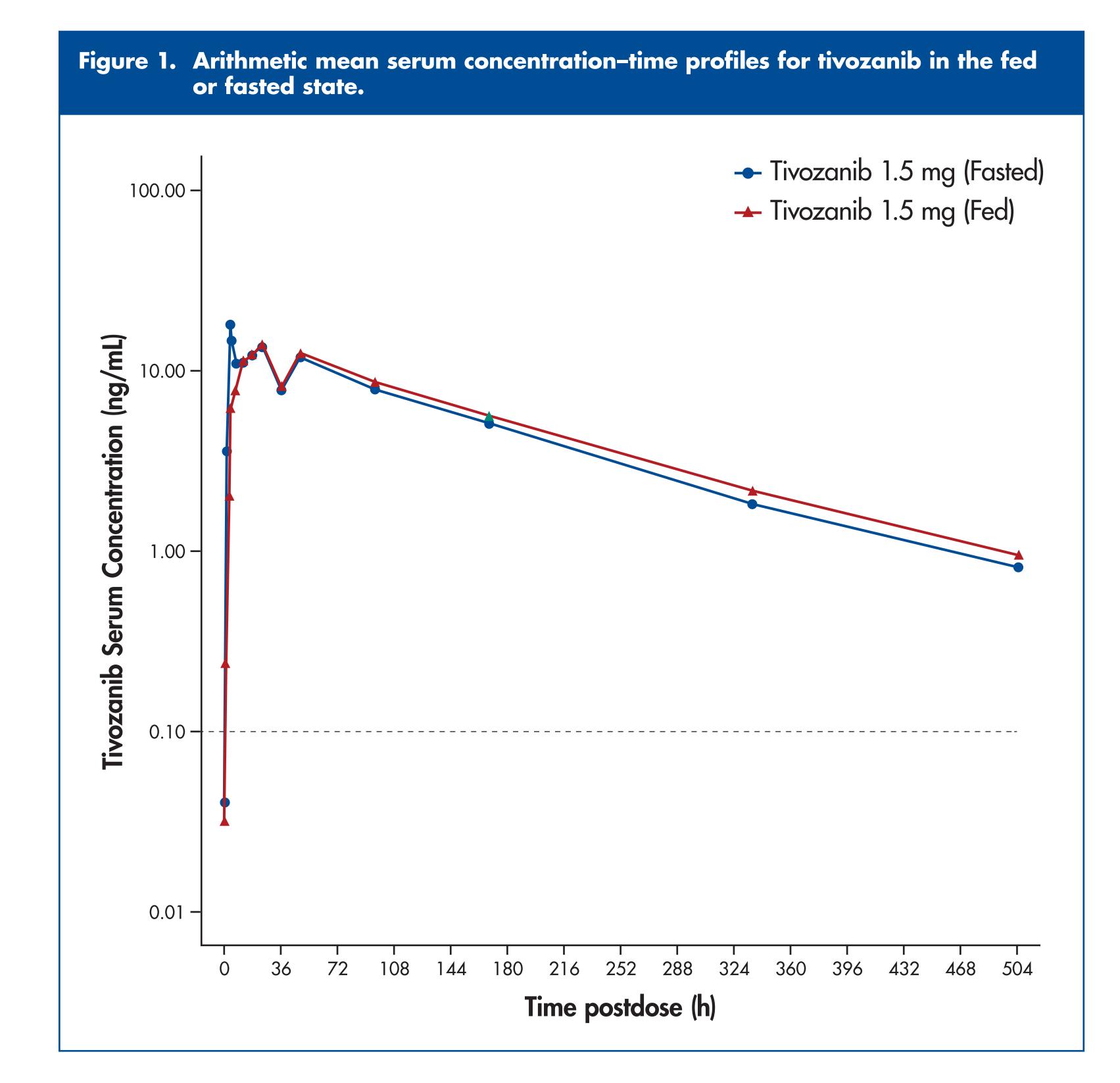
- The PK parameters evaluated were maximal serum concentration (C_{max}), T_{max} , $t_{1/2}$, area under the concentration–time curve extrapolated to infinity (AUC $_{0-\infty}$), apparent total clearance (CL/F), and apparent volume of distribution (Vz/F)
- PK data were analyzed by non-compartmental methods using Phoenix WinNonlin, version 5.2 (Pharsight Corporation, Cary, NC, USA)
- The effect of food on PK was assessed between fed state and fasted state using an analysis of variance and standard criteria for bioequivalence based on the exposure parameters $AUC_{0-\infty}$
- If the 90% confidence intervals (CIs) for the fed/fasted $AUC_{0-\infty}$ and C_{max} were to fall within the range of 80–125%, it was to be concluded that food had no effect on exposure
- Calculations were performed using Statistical Analysis Software, version 9.1.3 (SAS Institute Inc, Cary, NC, USA)
- Determination of sample size: with 24 subjects completing the trial, this crossover design would have ≥90% power with two-sided, type-I error rate of 5% to reject the null hypothesis that tivozanib exposure was not equivalent between fed and fasted states

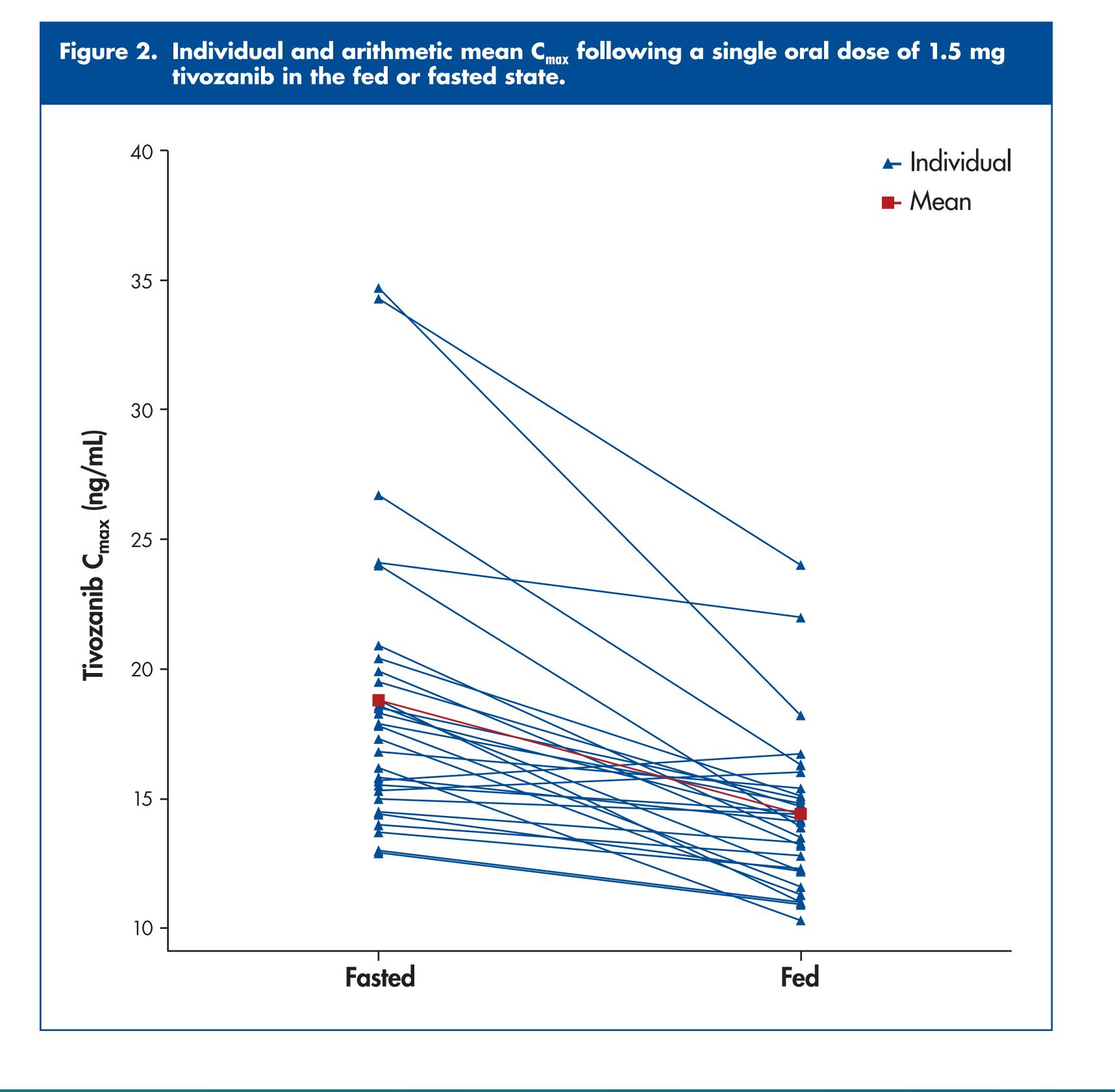

Results

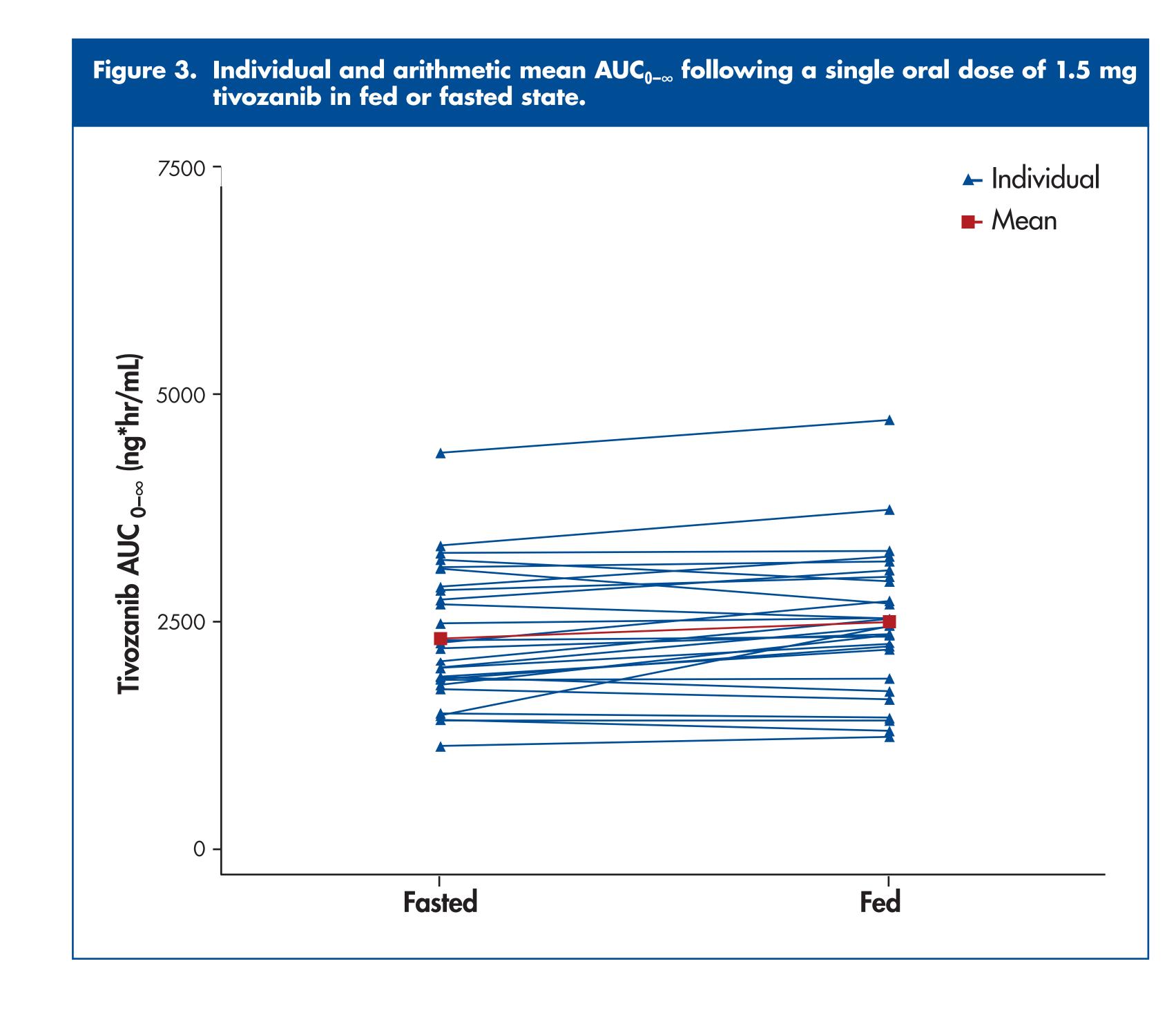
- Thirty healthy volunteers were enrolled in the study (Table 2)
- Subjects had a mean age of 39 years
- Twenty-nine subjects (97%) completed the study
- One subject was lost to follow-up at 22 days after dosing in the fed state during Period 1 of

Characteristic	N=30
Mean age (range), yrs	39 (22–53)
Mean weight (range), kg	75.7 (55.5–105.2)
Mean BMI (range), kg/m²	26.0 (21.4–30.8)
Gender, n (%)	
Male	19 (63)
Female	11 (37)
Ethnicity, n (%)	
Hispanic or Latino	15 (50)
Not Hispanic or Latino	15 (50)
Race, n (%)	
White	21 (70)
Black	8 (27)
American Indian	1 (3)

Pharmacokinetics


- Food delayed absorption of tivozanib and caused a significant decrease in maximal serum tivozanib levels vs fasted state (Tables 3 and 4; Figures 1 and 2)
- Following a single oral dose of 1.5 mg tivozanib, median T_{max} was longer in the fed state (24.0 hours), compared with that in the fasted state (3.0 hours) (Table 3 and Figure 1)
- The mean C_{max} values in the fed state were lower than that achieved in the fasted state (geometric means, 14.1 and 18.1 ng/mL, respectively) (Table 3 and Figure 2)
- The geometric mean ratio (90% CI) of fed relative to fasted states for C_{max} was 77.5% (72.9–82.4%); the 90% CI did not fall within the 80–25% bioequivalence range
- Despite the decrease in serum concentration, there was no significant difference in $AUC_{0-\infty}$ of serum tivozanib between the fed and fasted states (Tables 3 and 4; Figure 3)
- The mean $AUC_{0-\infty}$ was similar between the fed and fasted states (geometric means, 2377 ng·hr/mL and 2198 ng·hr/mL, respectively) (Table 3 and Figure 3)
- The geometric mean ratio (90% CI) of fed relative to fasted states for $AUC_{0-\infty}$ was 107.4% (102.8–112.3%); the 90% CI was within the 80–125% bioequivalence range (Table 4)
- Food did not appear to have an impact on the elimination of tivozanib (Table 3)
- The mean t_{1/2}, CL/F, and Vz/F values for tivozanib were similar in the fed and fasted states




^a Median (min, max) is presented for T b Arithmetic mean is presented for t_{1/2}

^c One subject had no distinct terminal elimination phase, so $t_{1/2}$, as well as other related PK parameters such as AUC_{0-\infty}, CL/F, and Vz/F, could not be

	LS mean fed	LS mean fasted	LS mean ratio (fed/fasted)	90% CI
C _{max} , ng/mL	14.1 (n=30)	18.2 (n=29)	77.5%	72.9–82.4%
AUC _{0-∞} , ng·hr/mL	2372 (n=29)	2209 (n=28)	107.4%	102.8–112.3%

Tolerability

- Twelve subjects reported a total of 25 AEs during the study
- All 25 AEs were mild in intensity
- Seventeen AEs occurred in the fed state, and 8 occurred in the fasted state
- Three AEs were considered possibly related to tivozanib: headache was reported by two subjects in the fed state, and nausea was reported by one subject in the fasted state
- No clinically significant changes or findings in clinical laboratory evaluations, vital signs
- measurements, physical examinations, or ECGs were noted

Conclusions

- Dosing tivozanib with food decreases maximal concentrations (C_{max}) by ~23%, but does not affect overall exposure (AUC)
- Administration of a single oral dose of 1.5 mg tivozanib was well tolerated in this group of healthy subjects
- As tivozanib is dosed chronically in oncology patients and accumulates ~6 to 7 times singledose levels when at steady state, lack of an overall effect of food on the AUC of tivozanib, even with a decrease in C_{max} , is unlikely to have an impact on steady-state serum concentrations
- Overall, these results indicate that food does not have a clinically meaningful effect on the PK of tivozanib as compared with dosing in the fasted state

- 1. Eskens FA *et al. Clin Cancer Res* 2011;17:7156–7163.
- 2. Nosov D et al. Antitumor activity and safety of tivozanib (AV-951) in a phase 2 randomized discontinuation trial in patients with renal cell carcinoma. J Clin Oncol In press.
- 4. Cotreau MM et al. Clin Pharmacol Ther 2011;89(suppl 1):S1–S165. Abstract PII-36.
- . Cotreau MM *et al*. Absorption, metabolism, and excretion of tivozanib, a vascular endothelial growth factor receptor (VEGFR tyrosine kinase inhibitor (TKI), in healthy male subjects: a Phase I, open-label study. *Clin Pharmacol Drug Devel* (submitted).

This study was supported by AVEO Pharma Inc. and Astellas Pharma Global Development, Inc. AVEO and Astellas are partie collaboration agreement for the co-development of tivozanib. Editorial assistance was provided by Jinling Wu, MD, PhD, Cham Communications International, and was funded by AVEO Pharma Inc. and Astellas Scientific and Medical Affairs, Inc.