Abstract # A5

Tivozanib, a selective VEGFR TKI, potently blocks angiogenesis and growth in tumors that express a high level of VEGF-C and are refractory to VEGF-A blockade

Introduction

Scientific understanding of the role of VEGF-A in tumor angiogenesis has led to the development of anti-angiogenic therapies, such as bevacizumab, that selectively target VEGF-A. However, clinical trials across multiple cancer types have resulted in limited positive outcomes. VEGF-C is thought to be a potent lymphangiogenic growth factor and plays a role in tumor angiogenesis through VEGFR3; it has also been shown to bind to VEGFR2, which is important in tumor angiogenesis. Nevertheless, a direct role of VEGF-C in driving tumor angiogenesis has not been established.

To explore the potential of VEGF-C as a driver of tumor angiogenesis and its implication in developing antiangiogenic therapies, we assessed the activity of tivozanib, a potent and selective TKI for VEGFR1, 2 and 3, and a VEGF-A targeted antibody in animal tumor models that exhibit distinct VEGF-C and VEGF-A expression.

Tivozanib (AV-951): preclinical and clinical summary

- Potent, selective ATP competitive VEGFR TKI
 - 160-240 pM pVEGFR IC50 against VEGFR1,2,3 in cell based assays >8x selectivity of VEGFR1,2,3 potency/next measured kinase potency
 - 4.5 day T1/2 in human studies
- Robust efficacy in 272 patient Phase 2 RCC trial
- ORR: 25 40% (all RCC independent review—cc/neph investigator review)
- PFS: 11.7 months in overall kidney cancer population
 - 14.8 months in clear cell nephrectomized RCC patients (n=176)
- Safety profile consistent with on-mechanism inhibition
 - Most common AEs are Hypertension and Hoarseness
- Low incidence of off target AEs: notably Fatigue, HFS, Mucositis, Diarrhea Enrollment complete for phase 3 registration study in front line RCC
- 500 patients: Tivozanib v. sorafenib in VEGF treatment naïve patients
- Data expected 4Q 2011 at the earliest

Antiangiogenic mechanism of tivozanib in murine breast tumors

Complete tumor growth inhibition (BH469)

→ Veh. p<0.001 AV-951 20mpk gd 13 15 17 19 21 23 25

Tivozanib treatment induced hypoxia and associated tumor death

Hypoxia extended to tumo

cells adjacent to microvessels

Characteristic histology changes in blockade

of angiogenesis

Avastin

PLGF VEGFBVEGFA VEGFC VEGFC

///X

William Winston*, Luhua Shen* (equal contribution), Guangmu Li, Sandra Abbott, Ting Chen, Jinwei Jiang, Solly Weiler, Samantha Perino, Ronan O'Hagan, Murray O. Robinson, M. Isabel Chiu, Jeno Gyuris and Jie Lin

Pharmacodynamic analysis suggested an antiangiogenic MOA of tivozanib in VEGF-C tumors

VEGF-C, suggesting that pan VEGFR TKIs, such as tivozanib, may have broader activity than agents that selectively target VEGF-A

exhibited high level VEGF-C expression. Immunohistochemical analysis revealed similar tumor microvasculature in

antiangiogenic mechanism. This is consistent with the blockade of VEGFR2 and R3 phosphorylation in tissue cultre

3. VEGF-A antibodies were inactive in the VEGF-C tumors and only moderately active (B20) in the VEGF-A and -C tumors.

. These findings provide further scientific evidence that pan-VEGFR TKIs, such as tivozanib, may have broader activity