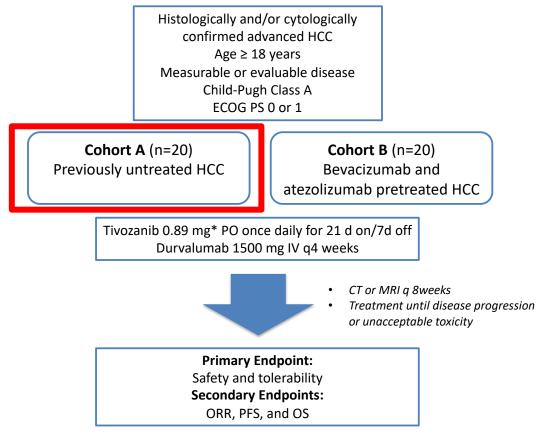
A Phase 1b/2 Study of Tivozanib in Combination with Durvalumab in Subjects with Advanced Hepatocellular Carcinoma (DEDUCTIVE): **Efficacy Results in Previously Untreated Patients**

Renuka Iyer¹, Daneng Li², Farshid Dayyani³, Julie Rowe⁴, Muhammad Beg⁵, Vijay Kasturi⁶, Thomas Abrams⁷


¹Roswell Park Comprehensive Cancer Center, Buffalo, NY ²City of Hope Comprehensive Cancer Center, Duarte, CA ³UC Irvine Health, Orange, CA ⁴University of Texas School of Health Sciences at Houston, Houston, TX ⁵University of Texas Southwestern Medical Center, Dallas, TX ⁶AVEO Oncology, Boston, MA ⁷Dana-Farber Cancer Institute, Boston, MA

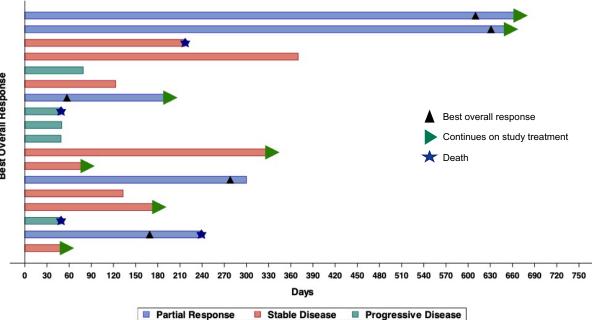
Rationale for Tivozanib and Durvalumab in HCC

- The combination of atezolizumab, an anti-PD-L1 antibody, and bevacizumab, a VEGF-A monoclonal antibody, has improved the standard of care over sorafenib in advanced hepatocellular cancer (HCC) with a median PFS of 6.8 months and a 1year overall survival of 67.2%. Serious toxic effects were noted in 38% of patients who received the combination.¹
- Tivozanib, a potent and selective VEGFR 1, 2 and 3 TKI, and durvalumab, an anti-PD-L1 antibody, have both demonstrated single agent activity in HCC.^{2,3}
- Tivozanib has been shown to reduce production of regulatory T cells,⁴ thus potentially facilitating immune-mediated responses.
- Durvalumab blocks the interaction of programmed death ligand 1 with the immune checkpoint receptor PD-1, thus facilitating cytotoxic T cell proliferation.³
- The selectivity and favorable tolerability of the VEGFR TKI tivozanib² may allow it to be used more readily as a combination therapy with an immune checkpoint inhibitor, potentially leading to improved safety and efficacy in HCC.
- DEDUCTIVE is a Phase 1b/2, multicenter, open-label study to assess the safety and efficacy of tivozanib with durvalumab in patients with advanced HCC previously untreated or bevacizumab- and atezolizumab-pretreated advanced HCC.

Study Design and Methods:

 Results from Cohort A, subjects with previously untreated HCC, are presented here. Cohort B is currently enrolling.

Results: Cohort A		Efficacy		
Baseline Clinical Characteristics	All patients N = 20	Efficacy Endpoint	Evaluable Patients N = 18*	
Age, median (range), years	68.5 (40-82)	Overall Response Rate, n (%)	5 (27.8)	
Sex, (%) Male Female	17 (85) 3 (15)	CR PR Stable Disease [SD], n (%)	0 5 (27.8) 8 (40)	
Race, (%) White	13 (65)	Progressive Disease, n (%) Disease Control Rate (CR+PR+SD), n (%)	5 (27.8) 13 (67.8)	
Black Asian	0	Duration of Overall Response (DOR), median (95% CI)	NE (2.6–NE)	
	5 (25) 1 (5)	Progression-free Survival (PFS), median (95% CI)	7.3 mos (1.8–NE)	
ECOG PS, n (%)		Overall Survival (OS), median (95% CI)	13.4 mos (8.2–NE)	
0	8 (40)	1-year OS, %	76	
1	12 (60)		21, n=18 patients evaluable for response, n=2 patients not yet reached first scan censored for PFS and OS	
Baseline BMI, median (range)	27.2 (21.8-37.9)	NE, not estimable	ration by Cubicat	
Cafaty and Talarability		Best Overall Response and Treatment Du	ration by Subject	


Safety and Tolerability

Adverse Events (AE), n (%)	All Patients N=20
Any-grade treatment-related (TR)AE	16 (80)
Grade 3-5 TRAE	3 (15)
Any-grade treatment-emergent (TE)AE	19 (95)
Grade 3-5 TEAE Grade 4 Grade 5	11 (55) 1 (5)* 1 (5)*
TEAE leading to Death	1 (5)
*hepaticencephalopathy	

TRAE in ≥ 10%, n (%)	Any Grade (n=20)	Grade ≥3 (n=20)
Hypertension	7 (35)	2 (10)
Fatigue	4 (20)	0
Diarrhea	4 (20)	0
Nausea	4 (20)	0
Hypothyroidism	4 (20)	0
LFT elevation (AST, ALT and/or ALP)	4 (20)	0
Dysphonia	3 (15)	0
Arthralgia	2 (10)	0
Palmar-plantar ertythrodysesthesia	2 (10)	0

- Grade 3 TRAEs occurred in n=3 patients (2 hypertension [HTN], 1 GI hemorrhage). There were no Grade 4 or 5 TRAEs.
- The most common Grade 1 and 2 TRAEs were HTN, fatigue, diarrhea, nausea and hypothyroidism.

Conclusions

The combination of tivozanib and durvalumab in previously untreated advanced HCC was well tolerated, and the observed safety profile was consistent with the known profile of both agents. Initial efficacy results demonstrate a median PFS of 7.3 months and a 1-year OS of 76%.

References and Acknowledgements

- 1. Finn R et al. N Engl J Med. 2020;382:1894-1905.
- 2. Fountzilas C et al. Br J Cancer. 2020;122(7):963-70.
- 3. Wainberg ZA et al. J Clin Oncol. 2017;35(15_suppl):4071.
- 4. Kalathil SG et al. Oncoimmunology. 2020;9(1):1824863...

Research support provided by AVEO Oncology and AstraZeneca.

^{*}equivalent to 1 mg tivozanib hydrochloride salt